
Report on the PIONIER project

“Programming Parallel and Distributed Computer Systems”

(January 1993 - June 1998)

Henri E. Bal

Department of Mathematics and Computer Science
Vrije Universiteit, Amsterdam

1. Introduction

This report summarizes the research results of the project “Programming Parallel and Distributed
Computer Systems,” whichtook placeat the department of Mathematics and Computer Science of
the Vrije Universiteit during 1 January 1993 to 30 June1998. This project wasfundedby the Nether-
lands Organization for Scientific Research (NWO)through a PIONIER grant (PGS62-382)awarded
to Henri Bal.

Parallel (or high-performance) computing is being used more and more often for solving com-
putationally intensive problems. Unfortunately, developing correct, portable, and efficient parallel
software is a difficult task, which limits furtheracceptanceof parallel computing. The goals of the
PIONIER project are to ease the task of parallel programming as much as possible, while also achiev-
ing good performance and highportability of parallel programs. These three goals (ease of use, per-
formance, andportability) are often conflicting, but all are crucial to thesuccessof parallel program-
ming.

Our research followed three directions: to find the right level of abstraction (or model) for a
parallel language,to study efficient and portable implementation techniques for parallellanguages,
and to evaluate all our ideas(aboutmodels and their implementation) using realistic applications.
The research therefore has aspects of:

- Programminglanguagedesign and programming models.

- Systems software (compilers, runtime systems, communication software).

- Parallel applications.

A distinguishingfeature of our research program is that we pay considerable attention toeachof
these areas. Many other parallellanguageshave been designed that were implemented only in a pro-
totype way (or not at all) and that have been used only for trivial applications.

As a result, our work has obtained a highvisibility, resultingin many international contacts (see
Section 10). The PIONIER project has resulted in severalpublicationsin top journals with a high
impact, includingACM Transactions on Computer Systems, ACM Transactions on Programming
Languages and Systems, IEEE Computer, and three papers inIEEE Concurrency. Thesuccessof the
project also resulted in two major research grants from the Vrije Universiteit (VU), onefunding a
groupof substantial size for the next four years and onefunding a large-scale parallel system. The
VSNU research evaluation gave the highest possible ranking for the research of the Computer Sys-
temsgroup,in which the PIONIERgroupparticipates.

The report is structured as follows. Section 2 gives somebackgroundinformation, including
our earlier work on parallellanguagesand the hardware infrastructure used during the project. The
rest of the report consists of three parts, discussing systems software (Sections 3-5), applications
(Section 6), and programminglanguagedesign issues (Sections 7-9). In Section 3 we discuss a new
Orca system, which is a cornerstone of our research. Section 4 examines parallel programming on
high-speed networks. Section 5 discusses wide-area parallel programming. Experience with parallel



- 2 -

Orca applications is described in Section 6. This work resulted in many new insights, which stimu-
lated further research on programming models, as described in Sections 7 and 8. Section 9outlines
our work on very high-levellanguages. In Section 10, welook at our cooperationwith other
researchers. Finally, in Section 11 we analyze the outcome of the project. Foreachproject, the pri-
mary researchers working on the project are given. Prof. Bal supervises all projects. A list of all the
members of the PIONIERgroupis given in Appendix A.

2. Background

Below we describe our earlier work on the Orcalanguageand welook at the hardware infrastructure
used in the project.

The Orca language

Before the PIONIER project started, we already had some experience in designing and implementing
parallel languages.In particular, we developed the Orcalanguage,which is a procedural, object-
basedlanguagefor parallel programming on distributed systems. The design and prototype imple-
mentation weredonemainly by Henri Bal and Frans Kaashoek, as part of their Ph.D. research (during
1987-1992).Since Orca plays an important role in the PIONIER project, we describe it briefly here.

Most parallellanguagesand libraries use either message passing or shared variables for express-
ing communication. Unfortunately, message passing is difficult to program, while shared variables
require shared memory for an efficient implementation, which is hard to implement on a large-scale
system. The idea behind Orca is to provide a programming model similar to shared variables, but
designed in such a way that it can be implemented efficiently on (scalable) distributed-memory sys-
tems.

The basic model of Orca is that of a collection of processes communicatingthrough shared
objects. Shared objects are variables that can beaccessedby multiple processes. Unlike normal
shared variables, shared objects are manipulated exclusively by user-defined, high-level operations,
which are expressed using abstract data types (see Figure 1). All operations on an object are exe-
cuted indivisibly (atomically), andeachoperation is applied to a single object. The main advantage
of the Orca model is that it hides the distributed nature of the system from the user. The shared object
model is close to shared variables, so for a programmer itlooksas if all processors areconnectedby a
shared memory, which is much easier to program than distributed-memory machines. The shared
object model, however, can be implementedwithout usingphysicalshared memory. Orca can there-
fore be described as anobject-based distributed shared memory (DSM) system [4].

deqenq

lookup

lookupadd

Shared
objects

CPUs

CPU 1 CPU 2 CPU 3

Figure 1: Two shared objects with user-defined operations.

A prototype implementation of Orca wasbuilt on top of the Amoeba distributed operating sys-
tem, which wasrunningon a parallel machine at the VU [11, 13, 39, 40]. An important weakness in
this prototype implementation was its lack ofportability to other systems. The runtime system, for
example, depended on themultithreadingand communicationprimitives provided by Amoeba. In



- 3 -

addition,the prototype compiler was rather inefficient.

During the PIONIER project, we benefited in several ways from this earlier work. We studied
the Orca programming model in depth and used it to develop more general object-based models.
Also, we used Orca as a research vehicle forstudyingadvanced implementation techniques for paral-
lel languageson modern parallel machines. These techniques include runtime systems, compilers, and
network communication software. Inaddition,we also used the Orca system as a tool for implement-
ing several parallel applications. We have developed numerous parallel applications in Orca, often
together with people from other research areas (e.g., Physics [37] and AI [3]). Finally, we have
applied ideas from the Orca system to other programminglanguages,including Java, Linda, and SR.

Hardware infrastructure

A significant part of our research is experimental and requiresaccessto a parallel computer whose
systems software we are able to change. The machines we used can be classified as so-calledcluster
computers (or Networks of Workstations). Unlike supercomputers, clusters arebuilt entirely from
off-the-shelfcomponents.Using standardcomponentsinstead of specially-designed processors and
interconnectsresults in a dramatic reduction in cost. Moreover, the advances in microprocessor tech-
nology (e.g., the Pentium Pro, PowerPC, and DEC Alpha) allow clusters to obtain high processing
speeds.

We have used two cluster computers (owned by our department) during the course of the pro-
ject. The first system, called theZoo*, is a collection of 80 single-board computers (see Figure 2)
eachconsisting of a 50 Mhz MicroSparc with 32 Mbyte local memory. All machines areconnected
by a 10 Mbit/sec Ethernet. This system runs the Amoeba distributed operating system that was
developed by prof. Tanenbaum’sgroup.

Figure 2: The Zoo: 80 single-board computers (MicroSparcs) connected by Ethernet.

The main problem with this type of system is the high communication overhead of the Ethernet
network. For thesuccessorof the system, we therefore decided to use a modern, high-speed network.
To determine which networktechnologyis most suitable for parallel computing, the PIONIERgroup
built an experimental testbed consisting of three8-nodeclusters that are identical except for the inter-
connectionnetwork; the three clusters use Fast Ethernet, Myrinet, and ATM, respectively. We did
3333333333333333
* Becauseit runs Amoeba, Orca, Panda, Hawk, and other creatures.



- 4 -

performance measurements on communication benchmarks and applications, showing that Myrinet
obtains the highest performance of these three networks [9, 26]. We therefore used Myrinet as the
high-speed network for thesuccessorof the Zoo.

The secondsystem we used is a cluster computer consisting of 128 PCs. Unlike with the Zoo,
the nodesare complete PCs, including a motherboard, hard disk, and PCI cards. Eachnodecontains
a 200 MHz Pentium Pro, 128 MByte of memory, and a 2.5 Gbyte local disk. All boards are con-
nected by two different networks: Myrinet (a 1.28Gbit/secnetwork) and Fast Ethernet(100Mbit/sec
Ethernet). Myrinet is used as fast user-levelinterconnect,while Fast Ethernet is used by the operat-
ing system. Myrinet uses System Area Networktechnology,consisting of LANai-4.1interfacescon-
nected by 8-port crossbar switches. The switches areconnectedusing a 2-dimensional torustopol-
ogy. The entire system is packaged in a single cabinet and wasbuilt by Parsytec (Germany). The
system runs the BSD/OS operating system from BSDI.

This cluster computer is part of a wide-area parallel system, called the Distributed ASCI Super-
computer (see Section 5). Aninitial 64-nodecluster was financed partly by an equipmentfund from
NWO (awarded to the ASCI researchschool),partly by the VU, and partly by the PIONIER grant.
This machine was installed in May1997. In May 1998,the cluster wasupgradedto 128nodes,using
a research grant from the VU given to the departments of Mathematics & Computer Science, Physics
& Astronomy,and Chemistry. These departmentswill do joint research on cluster computing using
this 128-nodemachine. Figure 3 shows a picture of the128-nodecluster, which is called theBeta-
cluster.

Figure 3: The Betacluster: 128 Pentium Pro PCs connected by Myrinet.

3. The portable Orca system

Project members: Bhoedjang, Langendoen, Rühl, Hofman, Jacobs, Verstoep.

An important result of the PIONIER project is a new, high-performance Orca system that is highly
portable andmodular. Unlike the original prototype system mentionedabove,the current Orca sys-
tem runs on a wide variety of machines and has been used for many applications. Inaddition, the
software system is a cornerstone of our research onlanguageimplementation techniques, communi-
cation software, and applications. Below, we describe the design of the system and the most impor-
tant lessons that were learned from building it. Also, we discuss otherlanguagesthat we have imple-
mented using certainmodulesfrom the Orca system, and welook at a performance visualization tool
that is part of the system.



- 5 -

Design

One of the key ideas in the new Orca system is to hide all aspects of theunderlyingoperating system
and hardware in a virtual machine, which is calledPanda [4, 17]. The structure of the system is
shown in Figure 4.

22222222222222222222222222222
Orca compiler22222222222222222222222222222

Orca runtime system22222222222222222222222222222
Panda22222222222222222222222222222

Operating system and hardware2222222222222222222222222222211
1
1
1
1
1

11
1
1
1
1
1

Figure 4: Structure of the Orca/Panda system.

The Orca system consists of three layers, which are implemented on top of the operating system (OS)
and/or the hardware. The lowest layer in our system is the Panda virtual machine, which provides a
certainfunctionality to theupperlayers, using a well-definedinterface.The primitives supportedby
Panda include lightweight threads, point-to-point message passing, remote procedure call (RPC), and
totally orderedgroup communication (broadcast). We have developed a simple and flexible user-
level threads package, called OpenThreads [19], together with Prof. Matthew Haines (University of
Wyoming). Inaddition,we havedoneextensive research on high-performance communication proto-
cols, in particular for totally orderedgroupcommunication and RPCs.

Orca’s shared objects are implemented by thesecondlayer, which is the runtime system (RTS).
The Orca RTS is implemented on top of Panda. Unlike the original Amoeba RTS, the Panda-based
RTS does not depend in any way on the OS; instead, it uses only theprimitives provided by Panda.
The RTS layer therefore only is concerned with managing objects, and not with doing communica-
tion. The most important optimization in the RTS is toreplicate objects that are read very often. The
advantage of replication is that read-only operations can be performed on the localcopy, without
doing any communication. The RTS uses Panda message passing to implement remoteinvocations
on non-replicatedobjects and broadcasting toupdateall copies of a replicated object when the object
is changed. Consistency of the replicas is obtainedthroughthe total-ordering semantics of Panda’s
broadcastprimitive.

The highest layer in the system is the Orca compiler. During the PIONIER project, we have
redesigned the original prototype Orca compiler. The new compiler is much more portable (it gen-
erates ANSI C code as output). Also, the codeproducedby the compiler is of highquality, so Orca
programs obtain a performance close to that of C. The compiler performs several optimizations,
including common subexpression elimination, code motion,loop-unrolling, and live-variable
analysis. The compiler translates operations on objects by generating calls to the RTS. Inaddition,it
generates information (e.g.,about object usage) that the runtime system uses to determine which
objectsshouldbe replicated [10].

A major advantage of the system is itsflexibility and modularity. The underlyingplatforms
differ significantly in thefunctionality they provide. Our software is structured in such a way that it
can exploit thefunctionality provided by theunderlyingplatform without giving up portability. For
example, if the message passingprimitive provided by theunderlying OS or communication
hardware is reliable, Pandawill make use of that. If it is unreliable, Pandawill run its own protocol to
make message passing reliable.

In addition,virtually all our software runs in userspace(outside the OS). The compiler and
RTS always run in userspace.Panda can be configured to use themultithreadingand communication
primitivesof the OS, or to run partly or entirely in userspace.On modern high-speed networks such
as Myrinet, for example, Panda runs entirely in userspaceand directlyaccessesthe network device,
which greatly reduces the overhead of communication calls. Moreover, userspaceprotocols can be



- 6 -

changed much more easily than OS protocols.

We have verified thesuitability of using a layered approach for obtainingportability by imple-
menting the Orca system on a variety of platforms. We have ported the system to several operating
systems (including Solaris, BSD/OS,Linux, Amoeba, and Parix), parallel machines (the CM-5, SP-2,
Parsytec GCel, Parsytec PowerXplorer, Meiko CS-2), and networks (Ethernet, Fast Ethernet,
Myrinet, ATM). Our experiences in porting the Orca system indicate that our approach toportability
indeed issuccessful.Typically, only a small part of the Panda layer has to be adapted to a new
environment. The compiler, RTS, and Orca application programs remain unchanged.

Evaluation of the Orca system

We have made athoroughevaluation of the Orca system and of our design choices. The results of
this studywerepublishedin a paper inACM Transactions on Computer Systems [4]. Below, we sum-
marize this work.

Most Distributed Shared Memory (DSM) systems replicate (orcache)shared data. Orca differs
from most other DSMs, however, in the way replicas are kept consistent. If a write operation (i.e., an
operation that changes the shared data) is applied to a replicated object, the Orca system must make
sure that the replicas remain coherent. Orca uses awrite-updateprotocol with function shipping:
write operations on shared objects are broadcast to all processors and are applied to all copies of the
object, thusupdatingthe replicas. Virtually all other DSMs use an invalidation approach (i.e., they
delete the replicas after a write). Our performance analysis has shown thatwrite-updatingis a good
approach to implement an object-based DSM, especially if it is used in combination with other tech-
niques that avoid replicating objects with a low read/write ratio.

Another interesting aspect is the way the Orca system determines which objects to replicate and
where to storenon-replicatedobjects. The Orca runtime system uses informationaboutobject usage
provided by the compiler and also maintainsdynamicstatistics. By combining this information, the
runtime system makes its decisionsaboutobject placement.An analysis of ten applications shows
that the system is able to make near-optimal decisions in most cases. Most programs achieve a
speedupwithin 1% of that obtained by a version in which the programmer makes all decisions.

An important insight from our work is that two decisions have had aprofoundimpact on the
design and performance of the Orca system. The first decision was toaccessshared data only
throughabstract data type operations.Although this property requires work from the programmer, it
is the key to a high-performance implementation. It often reduces the communication overhead,
becausean operation always results in only one communication event, even if itaccesseslarge
chunksof data. Asecondimportant decision was to let the Orca system replicate only those objects
that have a high read/write ratio. Since replicated data arewritten relatively infrequently, it becomes
feasible to use awrite-updateprotocol for replicated objects.

As part of the performance evaluation of Orca, we have alsodonea quantitativecomparison
between Orca and two other distributed shared memory systems, Treadmarks and CRL. For this
experiment, we ported these two systems to the Betacluster. The comparison shows that the Orca
programs generally have a lower communication overhead and betterspeedup.

Other parallel programming systems

Althoughthe Pandaportability layer was originally designed for Orca, itsmodularstructure allows it
to be used for implementing otherlanguagesas well. The advantage of using Panda as an intermedi-
ate layer is that it results in portable, efficient, andmodularsystems. We have also implemented
several other parallel programminglanguagesand libraries on top of the Pandainterface,some in
cooperationwith other researchers:

- The SR (Synchronizing Resources)languagedeveloped at the University of Arizona and the



- 7 -

University of California at Davis was implemented on our Panda system by Greg Benson from
UC Davis.

- A Linda system (MPI-Linda) designed by Joao Carreira (University of Coimbra in Portugal)
was ported to Panda [18].

- We ported MPI and PVM(popularmessage-passing libraries) to Panda.

- Three M.Sc. students (Ronald Veldema, Rob vanNieuwpoort, and Jason Maassen) imple-
mented Java on top of Panda, including a native Java compiler and a fast RemoteMethodInvo-
cation scheme.

Part of this work is described in a conference paper [36]. The conclusion is that our Panda-based
approach indeed is suitable for implementing a variety of systems. Anadditionaladvantage of this
work is that we get many applicationswritten in otherlanguagesthat we also use for our performance
studyof high-speed networks.

Performance visualization

High-level languageslike Orca easewriting of parallel programs by increasing the distance between
the programming model and the hardware. Unfortunately, this also makes it more difficult tounder-
stand the performance of parallel programs. To ease performancedebugging,it is essential to provide
tools that present the user with performance data at thelanguagelevel. We have designed atrace
package and a viewing tool,Orcshot, that address this issue for Orca. Orcshot is based on the
Argonne tool upshot; we have adapted this tool to Orca and we have made various extensions to
it [25].

The Orcshot tool takes asinput a trace file that is generated byrunningan Orca application with
a specialtracepackage. Thetracefile contains complete and detailed information on the state transi-
tions ofeachprocess and on all system-level communication events and all Orca objectaccesses.On
the systems where Orca runs,logging of an event isaccomplishedin a few microseconds,so tracing
is relatively non-intrusive(except forwriting the events to disks, which occursoccasionallyand is
made visible to the user).

The tracefiles are visualized with Orcshot (see Figure 5). Orcshot’s main display is a Gantt
chart, with timealongthe horizontal axis and threads (processes)alongthe vertical axis. The Gantt
chart can be scrolled in the time domain and arbitrarily zoomed. Events are displayed as smallboxes;
clicking on an event box opens up a largerbox, containing the complete data of the event. Orcshot
also allows the user to display only certain types of events. For instance, all events related to one
specific object can be selected so the user can focus on this object.Additionally, Orcshotsupports
optional visualization of lower-level (communication) events. This level is used mainly by the
developers of the Orca system. It can also be used by application programmers, but thenknowledge
of the languageimplementation is required. Finally, the toolsupportsuser-defined events that signal
progress or signify relevant states of the program.

4. Parallel computing on high-speed networks

Project members: Bhoedjang, Langendoen, Rühl, Hofman, Jacobs, Verstoep.

The most important difference between a supercomputer and a cluster computer is the communication
speed. Supercomputers like the T3E and SP-2 use specially designed, high-speedinterconnects,
whereas most cluster computers useoff-the-shelfLANs (e.g., Ethernet). During the past few years,
however, several networktechnologieshave been developed that obtain performance close to that of
supercomputer networks. Examples of such networks are ATM, Myrinet, SCI, and ServerNet.
Unlike the proprietary networks used in supercomputers, these new networks are generally available.
They are particularly interestingtechnologies,becausethey can bridge the performance gap between
a supercomputer and a cluster. This becomes clear by comparing the two systems used for our



- 8 -

Figure 5: Example output from Orcshot.

research (see Section 2). The Zoo is based ontraditional network technology(Ethernet), for which
our Panda communication software achievesroundtrip latencies over amillisecond.The Betacluster
uses the much faster Myrinet, for which we achieve a minimumroundtrip latency of 20
microseconds.The latter system achieves a communication performance that is close to that of
supercomputers like the SP-2, but at a fraction of the cost.

The main problem with high-speed networks, however, is thesoftware needed to exploit their
potential power. With low-latency networks like Myrinet, the softwarewill become the communica-
tion bottleneck.Traditionalsoftware designed for Ethernetwill have a relatively high overhead on a
high-speed network. Typical communication protocols or remote objectinvocationmechanisms have
an overhead ofhundredsof microseconds,whereas modern networkssupport(one-way) latencies on
the order of 1-10microseconds.Therefore,novel communication software is needed for fast net-
works.

To overcome the problem of high software overhead on high-speed networks, several research
groupshave resorted to low-level communication models that are easy to implement but hard to pro-
gram. An important part of our research is to investigate if a high-level programminglanguagelike
Orca can be implemented efficiently on a high-speed network. We have developed various optimiza-
tions for the Orca system. Our basic conclusion from this work is that a high-performance implemen-
tation is possible, but that software optimizations at all levels of the system are required to obtain a
high performance. We have developed optimization techniques for all layers of our system, including
the compiler, runtime system, communication protocols and even the software of the network inter-
faceprocessor [5, 15, 27, 28, 41]. Below, we describe some of this work.

An example of asoftware-bottleneckis the operating system. Withtraditionalcommunication
protocols, the network device is managed by the operating system kernel and isaccessedfrom user
programsthroughsystem calls. On a high-speed network, however, the time for a system call may
alreadyexceedthe message latency. Therefore, much research is beingdoneon user-level communi-
cation protocols. We have implemented Panda’s threads and protocol stack in userspace[19, 29]. On
high-speed networks, the networkinterfacealso is mapped into userspace,thus avoiding all operating
system overhead.

An important problem with user-level protocols is how to retrieve incoming messages from the
network and handle them. Thetraditionalsolution is to let the network device generate an interrupt,



- 9 -

but the costs of delivering interrupts to a user process (e.g.,throughUnix signals) often are very high
(exceedingthe message latency). An alternative mechanism is to usepolling, in which case the appli-
cation periodically checks if the network has a message available.Polling is notwithout its problems
either, however: it adds a burden on the programmer and it is difficult to get thepolling frequency
right. We havedoneextensive research on this issue, and we have designed new solutions that use a
combination ofpolling and interrupts,without anyinvolvementfrom the programmer [16, 28].

Our research on networkinterfacesoftware focused on what kind of abstraction the low-level
communication softwareshouldprovide to allow higher-level systems (e.g.,languages)to be imple-
mented efficiently. We have identified six issues that determine the performance and semantics of a
communication system: data transfer, address translation, protection, control transfer,reliability, and
multicast[16]. We havedoneresearch in several of these issues,resultingin a new networkinterface
protocol for Myrinet, called LFC [15]. One issue we havelookedat in detail is broadcast communi-
cation. We have devised severalnovel strategies for implementing broadcast communication on
Myrinet by exploitingtheprogrammabilityof the networkinterfaceprocessor [15, 41].

As a result of this research on compilers, runtime systems, and communication software, we
have shown that it is possible to build a programming system for high-speed networks that meets the
(often conflicting) goals of ease of use and efficiency. Orca provides a high level of abstraction to
the programmer, butstill obtains a high performance. On the Betacluster, for example, the latency of
a remote objectinvocationin Orca is 39microseconds.In addition,we have applied some of our
implementation techniques to other programminglanguagesand libraries. In this way, we have
obtained high-performance implementations of MPI, PVM, and Java. For example, our implementa-
tion of Java RemoteMethodInvocation(RMI) achieves a best latency (formethodswithout parame-
ters) of 35microsecondsover Myrinet, which is at least an order of magnitude faster than other
implementations of RMI.

5. Wide-area parallel computing

Project members: Plaat, Kielmann, Hofman.

An important emerging trend in parallel computing is to combine computational resources at different
locations into integrated, large-scale parallel systems. Such wide-area parallel systems are usually
referred to as metacomputers or computational grids. Several large projects arestudyingsoftware
infrastructures for metacomputers, such as the Legion andGlobusprojects in the US.

In 1997, the Dutch researchschool ASCI (AdvancedSchool for Computing and Imaging)
started a new national project in this research area. The goal of this project is to build a wide-area
distributed supercomputer fromoff-the-shelfcomponents,and to use this system for joint research on
parallel and distributed computing. The wide-area system is called DAS (Distributed ASCI Super-
computer) and wasfundedin part throughan equipment grant of NWO/SION.

The DAS system consists of four clusters, located at four ASCIuniversities:the Vrije Universi-
teit, the University of Amsterdam, the University of Leiden, and Delft University ofTechnology(see
Figure 6). The four clusters areconnectedby a wide-area ATM network (Surfnet-4). Each local
cluster consists of a number of Pentium Pro processorsconnectedby Myrinet. Three of the clusters
have 24 processorseach;the cluster at the VU (the Betacluster) has 128 processors, as described in
Section 2.

The PIONIER group played an important role in the design of the DAS system and also
developed much of the systems software for the DAS clusters. Several other researchers in ASCI
have parallel programs based on PVM or MPI, and use our implementations of these libraries (and
our Panda communication software).

In 1997,our researchgroupstarted a new project on wide-area parallel computing(fundedpar-
tially through a SION grant), using the wide-area DAS system. The goal of this project, called



- 10 -

VU UvA

LeidenDelft

24 24

24

ATM

128

surfnet

Figure 6: the Distributed ASCI Supercomputer (DAS).

Albatross, is to studylanguagesand applications (and their performance) for wide-area parallel sys-
tems. In contrast, most other metacomputing projects focus on issues like fault-tolerance, I/O,
resource management, and heterogeneity.

In the first phase of the Albatross project, we have studied the performance of parallel applica-
tions on wide-area systems such as DAS. Adistinguishingfeature of wide-area systems is that the
latency and bandwidth of the wide-area network (WAN) are orders of magnitude worse than those of
local networks. On the DAS system, for example, theroundtrip latency of the local area network
(Myrinet) is about 20 microseconds,while the wide-area network has a latency of several mil-
liseconds.Likewise, the measuredthroughputis about50 Mbyte/sec for Myrinet and 0.75 Mbyte/sec
for the WAN. So, there is a performance gap on the DAS system ofabouttwo orders of magnitude
between the LAN and the WAN. Most applications used for metacomputing therefore are embarrass-
ingly parallel (i.e., they barely communicate at all). Unfortunately, this severely restricts the type of
application that can be used. An interesting issue therefore is tostudythe impact of this ‘‘gap’ on the
performance of more challenging parallel applications (that do communicate).

We have implemented severalnontrivial Orca and MPI applications on the wide-area DAS sys-
tem and we have analyzed their performance [12, 30]. The results show that many applications
experience a dramatic performance degradation when run on a wide-area system, due to the slowness
of the WAN links. We have subsequently studied how to optimize these programs, by taking the
hierarchical structure of the system intoaccount. The optimizations we used reduce communication
traffic between clusters (i.e., over the WAN) or hide intercluster latency. The optimizations substan-
tially improve performance of most applications. As a result, most of the applications run faster on
multiple DAS clusters than on a single cluster, showing that the range of applications suited for a
meta computer may be much larger than previously assumed. In the next phase of the Albatross pro-
ject, wewill studyprogramming systems that ease the implementation of wide-area parallel applica-
tions. For example, we are currently designing a library of collective communicationprimitives for
hierarchical wide-area systems.



- 11 -

6. Parallel applications

Project members: Wilson, Romein.

An important goal of our work is to have many people use the Orca system for real applications. We
believe that actual user experience is important to assess the strengths and weaknesses of our
approach. Below, we summarize the experiences obtained so far.

Dr. Greg Wilson did an extensivestudyon theusabilityof Orca while he was a member of our
group.He used a suite of applications (that he had developed earlier) for assessing theusability of
parallel programming systems forwriting parallel programs. In contrast, benchmark suites such as
SPLASH aim to assess only the performance of programming systems and not their ease of use.
Wilson’s suite, called theCowichan problems, has been selected carefully to cover a wide spectrum
of application domains and parallel programming idioms. The suite includes numerical as well as
symbolic applications. The applications are: the Turing ring,polygonoverlay, image skeletonization,
skyline matrixmultiplication,game-tree search, and active chart parsing.

During the experiment, six different studentseachimplemented one of the Cowichan problems
in Orca, as a project for their M.Sc. thesis, supervised by Wilson. Wilson used this work to do a
thoroughevaluation of theusability of the Orca system. The lessons learned from this research are
described in a joint research paperpublishedin IEEE Parallel & Distributed Technology [42].

We are collaborating with dr. Spoelder of the department of Physics andAstronomyof the VU
on parallel applications. One application we implemented in Orca is a Monte Carlo simulation of
high energy particles in anonpolar liquid. The results of this work are described in a journal
paper [37]. Another application is spline-based modeling of thesurfaceof the human cornea. This
technique is used in a system (designed by the department of Physics andAstronomyand the depart-
ment of Medicine of the VU) for measuring the shape of an eye. A problem with this application is
that the spline computations takeaboutan hour on a single workstation, whereas a doctor using the
equipment would like to see the result almost immediately. We have reduced the computation time
by developing a parallel Orca program for solvingnonlinearestimation problems.

Several other M.Sc. students andvisiting researchers have worked on various Orca applications,
including neural networks [38], retrograde analysis [3, 6],N-bodysimulation [31], the arc consistency
problem [1],DNA sequence comparison, ray tracing, automatic test-pattern generation for combina-
torial circuits, and CYK-parsing usingdynamicprogramming. Finally, we have implemented most of
the SPLASH applications in Orca.

We have learned several important lessons from all this work. The basic conclusion is that Orca
achieves its primary goal of being easy to learn and use [42]. Orca’s shared object model signifi-
cantly simplifies parallel programming, by hiding theunderlyingcommunication hardware from the
programmer. Also, this model is easy to learn, since it is based on abstract data types, with which
most programmers arefamiliar. In addition,most Orca applications obtain reasonable or good perfor-
mance(speedups).

However, Orca’s model and implementation also have some shortcomings. The main problems
with its programming model were:

- It is difficult to write data-parallel applications in Orca,becauseits shared data structures
(objects)cannotbepartitionedamongmultiple machines.

- The model allows operations to be applied to only a single object, which is a severe restriction
for several applications.

These observations stimulated further research on the Orca model, as described in the next two sec-
tions.



- 12 -

7. Data-parallel Orca

Project members: Ben Hassen, Jacobs, Rühl.

Like many other parallellanguages,Orca is based ontask parallelism. With this model, the program-
mer can create any number of parallel tasks (processes) that can interact in arbitrary ways. Other
parallel languages(e.g., High-Performance Fortran, pC++) usedata parallelism. Data parallelism is
based on applying the same operation in parallel on different elements of a data set. Unlike with task
parallelism, all processors conceptually execute the same program, on different data elements. The
advantage of data parallelism is that it uses a simpler model. The programmer mainly isresponsible
for specifying the distribution of data structures and the compiler takes care of generating theneces-
sary code for communication and synchronization. Unfortunately, the simple model of data parallel-
ism also makes it suitable only for a restricted class of applications. In particular, applications that
use irregular data structures often do not match the model and impose difficult problems on both the
languagedesigner and compiler writer. Such applications are often easier to write in a task parallel
language.

Since both task and data parallelism thus have their strengths and weaknesses, it is attractive to
integrate both forms in one model. Several research projects are working on such an integration [8].
We havedoneresearch on adding data parallelism to Orca. The key idea is to allow array-based
objects to bepartitionedand distributedamongmultiple machines. An operation on such apartitioned
object is executed in a data-parallel way, on the different elements of an array. The new object model
is much more general than the original model, andsupportssingle-copy,replicated, andpartitioned
objects.

The result of this work is alanguagethat supportstask and data parallelism in a clean way,
using a simple model. We have extended the Orca compiler with these newlanguageconstructs. We
have developed a runtime system (called Hawk) for data parallel objects and we have integrated it in
the original Orca RTS. Also, we have implemented several applications in the extendedlanguage.
Data-parallel applications indeed are much easier to write in the newlanguage.In addition,several
applications exist that can exploit task and data parallelism in a single program. Such applications are
hard to express in alanguagethat onlysupportsone form, but they turned out to be easy to write in
the newlanguage.This work is described in several papers [20, 21, 22, 23, 24].

8. Advanced object-based programming models

Project member: Rühl.

An important restriction in the original Orca model is that it allows atomic operations to be applied to
only a single object. This restriction was imposedbecauseit allows an efficient implementation on a
distributed system. For several applications, however, this restriction complicates programming. We
have designed two extensions to the basic Orca model that address this problem. One extension,
called atomic functions, allows the programmer to define functions that are applied indivisibly to a
collection of objects [33]. Another extension,nested objects, allows objects to be structured using
multiple sub-objects, which may be located on different machines. Operations on the entire (struc-
tured) objectwill execute indivisibly, even if theyaccessmultiple sub-objects on different machines.
To a certain extent, the data-parallel extensions described in Section 7 also have this property, but (as
in most data-parallellanguages)they restrict objects to contain only array-based data structures.
With nested objects, arbitrary data structures can be defined.

The new models greatly enhance the expressiveness of the original Orca model, but also make
an efficient implementation much more challenging. We have designed a flexible framework for
implementing these (and possibly other) extensions. The new system also uses the Panda virtual
machine as its lowest layer, to provide basic communication and threadsprimitives.On top of Panda,
the new system defines the following layers:



- 13 -

- A layer with high-level communicationprimitives(e.g., collective communication).

- A generic runtime system, which providesprimitives (e.g., data dependency resolution, con-
tinuations) that are useful for implementing several different programming models.

- A number ofmodel-specific runtime systems,eachof which implements an object model (e.g.,
single-copyobjects, replicated objects, nested objects, atomic functions).

The implementation modelunderlyingthe system is calledcollective computation. The idea of this
model is to have all processors participate in operations (e.g., atomic functions), so they can together
decide on the best execution of the operation and minimize the communication overhead.

We have also developed a new mechanism, calledcommunication schedules [34], which can be
used to implement collective communication efficiently. With communication schedules, the com-
munication pattern of a collective operation is expressed (by the programmer or a compiler) before
the operation is executed, using a set of simple functions. The runtime system uses this communica-
tion pattern to implement the collective operation as efficiently as possible. It can, for example,
decrease the number ofacknowledgementmessages needed or eliminate the overhead of context
switching during data forwarding [34]. We have used communication schedules for implementing
several collective operations (similar to those used in the MPI standard).

Anothernovel idea in the implementation concerns the synchronization of operations onmulti-
ple objects. To address this problem, we have developed an abstraction calledweaver [35], which is
a function that is executed by a collection of processors. We have applied this idea in a runtime sup-
port system for atomic functions and nested objects.

9. Very high level languages

Project members: Romein, Plaat.

Another research direction we are taking is that of very high level, application-oriented,languages
with implicit parallelism. The idea is to define application-specificlanguagesthat are very easy to
use for one application domain. Thelanguage’scompiler usesknowledgeabout the application
domain to automatically generate a parallel program from the source code. The advantages of this
approach are ease of use and automatic parallelization. The disadvantage is reducedflexibility, since
eachlanguageis suitable for only one application domain.

As part of this project, we have developed a very high-levellanguagefor game playing, called
Multigame [32], in which board games like chess, checkers, and othello can be expressed. AMulti-
game program essentially is a formal description of the rules of a game. From this description, the
Multigamecompiler automatically generates a parallel program thatwill play this game (see Figure
7). The Multigame system uses four different parallel search strategies, based on the alpha-beta
search,MTD(f), negascout, and IDA* algorithms. Inaddition, the system provides a number of
well-knownheuristics, such astranspositiontables, the history heuristic, and iterative deepening. An
important issue is how to reduce the communication and search overhead of a parallel game tree
search program.

As an example, considertranspositiontables, which store values ofpositionsthat have already
been analyzed. Ifeachprocessor keeps a privatetranspositiontable, therewill be no communication
overhead. However, processorswill then not have anyknowledgeaboutwhich positionshave been
analyzed by other processors, which leads to a large search overhead. If, on the other hand, all tran-
sposition table information is communicatedamong all processors, this search overheadwill be
avoided but the communication overheadwill be large. We have studied this problem in detail, and
investigated various alternatives (including replicated andpartitionedtranspositiontables).

A related idea that we investigated is to exploit programmable networkinterfacesto speed up
transpositiontable operations [14]. Several modern networkinterfaces(e.g., Myrinet) contain a pro-
grammable processor. Many researchgroups have optimized message passing libraries by



- 14 -

Multigame Program

Multigame Front-End Compiler

Game Playing Program

C Compiler

❑

❑

Board Description

Move Generator Evaluation Function

Multigame Library

Search Algorithms

Heuristics

Platform Support

User Interface

❑

❑

❑

❑

Generated Code

Figure 7: structure of the Multigame system.

redesigning the software (firmware) of this processor. We have investigated firmwaresupportfor
application-specific shared data structures, in particulartranspositiontables. We have developed cus-
tomized software that runs partly on the network processor and partly on the host. The customized
software greatly reduces the overhead of interactions between the networkinterfaceand the host.
Also, the software exploits application semantics to obtain a simple and fast communication protocol.
Our results show that forpartitionedtables the maximum number of data structure operations per
secondper processor is increased from21,000to 72,000.In addition,a performance improvement up
to a factor 2.5 is achieved at the application level.

10. Contacts with other researchers

During the project, we havecooperatedwith numerous researchers in the Netherlands and elsewhere.
Prof. Frans Kaashoek (MIT Laboratory for Computer Science) has worked with us on the Orca and
Panda systems for many years and has contributed many valuable ideas. Wecooperatedwith the
group of Prof. Tanenbaum of our department on communication and operating systemsupportfor
parallel languages;also they developed the Amoeba distributed operating system, on which we did
most of our experimental work during the first four years of the project. Dr. Dick Grune of our
departmentcooperateswith us on theMultigameproject. Dr. VictorAllis worked with us on parallel
retrograde analysis while he was in the AIgroupof the VU. In 1996,we started an extensive colla-
boration with the Physics Applied Computer Sciencegroupof the Department of Physics and Astron-
omy of the Vrije Universiteit, to work on parallel applications inphysics,as described in Section 6.

Several scientists from the US and elsewhere stayed for a few months in our researchgroup.
Prof. Matthew Haines (University of Wyoming) spent one month (March1996)in our groupto ini-
tiate joint research on thread packages and onlanguageswith integrated task and data parallelism.
This work so far resulted in a jointpublication in an IEEE journal [8] and a conferencepublica-
tion [19]. Greg Benson (UC Davis) spent four months (MarchthroughJune1996) in our group.He
used our Panda system to design a portable implementation of the SRlanguage[36]. Joao Carreira
(University of Coimbra) visited ourgroupfor one month (November1996)to implement a Linda sys-
tem on top of Panda [18]. Matt Welsh (currently at UC Berkeley) ported the U/Net system to
Myrinet while working in ourgroup(in May and June1997). Dr. Mario Lauria (currently at UC San
Diego) stayed in ourgroupduringAugust1997 to work on collective communication using our DAS
system.



- 15 -

We also participated in the TEMPUS project ’DISCO’ ("Development in Romania of short-
term higher education in computing, centered on distributed processing and its applications"). Several
staff members and students from Romanianuniversitiesspent a few months in ourgroupas part of
this project, to do research on parallel programming. Prof. Irina Athanasiu (Polytechnical University
of Bucharest)cooperatedwith us on data-parallel Orca [21] and parallel applications [1].

Members of ourgroup spent some time at MIT, the University ofEdinburgh,and Cornell
University and attended numerous international conferences andworkshopsduring the course of the
project. Bal was program chair of theIEEE Computer Society 1994 International Conference on
ComputerLanguages(Toulouse,1994),co-chair of the Internet ProgrammingLanguagesworkshop
(Chicago,1998),and programcommitteemember ofaboutfifteen conferences andworkshops.Dr.
Langendoenwas program chair of the first andsecondWorkshopon Runtime Systems for Parallel
Programming (Geneva, April 1997 andOrlando,March1998).

We have also had several contacts withindustry,mainly throughM.Sc. students. Various stu-
dents supervised by Prof. Bal did their final project at anindustrialor governmentalresearchinstitute,
including NLR,GAK, RIVM, CBS, andTijl Data. Other students did projects at foreignuniversities,
including the University ofBologna,the University of Lancaster, and the University ofLingkoping.
Several foreign students(from Technische Universität Graz and Polytechnical University of
Bucharest) did a M.Sc. project in ourgroup.

All researchers of ourgroup participate in the ASCI (AdvancedSchool for Computing and
Imaging) researchschool. Bal is a member of the board of ASCI and was chairman of the ASCI’97
conference and of the DASworkshop(March 1998). Our groupalso plays an important role in the
DAS project.

11. Discussion

In the project, we did research on programmingsupportfor parallel and distributed computer systems.
The PIONIER grant allowed us to do this research in much greater depth than the majority of other
(international) projects. We were able tostudy (1) programming models andlanguagesthat make
parallel programming on distributed systems as easy as possible; (2) advanced techniques to imple-
ment these models efficiently and in a portable way; and (3) to evaluate the models and implementa-
tion techniques using realistic applications. In comparison, many other projects investigate only one
of these issues in isolation. Since the combination of ease-of-use, efficiency, andportability is a chal-
lenge,studyingall these issues in depth is of great value.

Our research project has obtained a highvisibility. We have many international contacts and
members from ourgroupare often invited for giving talks or joining programcommittees(e.g., Bal
was selected for theIEEE CS EuropeanDistinguishedVisitors Program). The project resulted in
severalpublicationsin top journals. The most importantpublicationsof the PIONIER project are our
papers inACM Transactions on Computer Systems [4] and ACM Transactions on Programming
Languages and Systems [23]. TOCS is the most prestigious journal in the area of computer systems
andpublishesabout16 papers a year. Also, we have a paper inIEEE Computer, and three papers in
IEEE Concurrency (formerly calledIEEE Parallel and Distributed Technology). A paperaboutour
LFC protocol [15]receivedthe best-paper-award (out of 214 submissions) at the 1998 International
Conference on Parallel Processing (Minneapolis). The project alsoproduceduseful software, which
further increased ourvisibility. The sources of the Orca system are availablethrough the World
Wide Web and have been downloaded by more than 200 people.

The PIONIER project also had a large impact within the university. The VSNU research
evaluation gave the highest possible ranking (i.e., ‘‘excellent’’ for all criteria) for the research of the
Computer Systemsgroup(which consists of the PIONIERgroupand prof. Tanenbaum’s distributed
systemsgroup). On 1 April 1998,Dr. Bal wasappointedpart-time (0.4) professor in the Department
of Mathematics and Computer Science and the Department of Physics andAstronomy,to work on



- 16 -

physics-appliedcomputer science (in particular parallel and interactive applications). As a result, the
collaboration with the Physics departmentwill be intensified significantly in the near future. Also,
the departments of Mathematics & Computer Science, Physics &Astronomy,and Chemistryreceived
a substantial research grant from the VU tocooperatein a new cluster computing project that started
recently. This grant allowed us to extend our cluster to 128nodes. Finally, Bal receiveda research
grant from the VU(‘‘Universitair StimuleringsFonds’’), funding a groupof substantial size during
the next four years. Thisgroup will do research in several areas, including parallel object-based
languages,wide-area parallel programming, distributed shared memory, and interactive applications.

Appendix A: Research group

The table below gives an overview of the researchgroup. Dr. Plaat wasfundedthroughthe PIONIER
grant during May to October 1997 and subsequently by a SION grant. Dr. Hofman wasfunded
throughthe PIONIER grantuntil 1 June1998,and currently is employed by the VU.

Name Position From To Funding22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
Prof. dr. ir. H.E. Bal Professor VU2222222222222222222222222222222222222222222222222222222222222222222222222
Dr. K.G. Langendoen Associate Researcher 1/1/93 31/1/98 NWO2222222222222222222222222222222222222222222222222222222222222222222222222
Drs. T. Rühl Ph.D. student/researcher 1/7/93 31/5/98 NWO2222222222222222222222222222222222222222222222222222222222222222222222222
Drs. R.A.F. Bhoedjang Ph.D. student/researcher 1/7/94 VU2222222222222222222222222222222222222222222222222222222222222222222222222
Drs. J.W. Romein Ph.D. student 1/9/94 VU2222222222222222222222222222222222222222222222222222222222222222222222222
Drs. J.C.H. Jacobs Programmer VU2222222222222222222222222222222222222222222222222222222222222222222222222
Dr. R.F.H. Hofman Programmer NWO/VU2222222222222222222222222222222222222222222222222222222222222222222222222
Drs. C. Verstoep Programmer VU2222222222222222222222222222222222222222222222222222222222222222222222222
Dr. S. Ben Hassen Postdoc 1/9/94 31/12/96 NWO2222222222222222222222222222222222222222222222222222222222222222222222222
Dr. G.V. Wilson Postdoc 1/1/94 31/9/94 EC2222222222222222222222222222222222222222222222222222222222222222222222222
Dr. A. Plaat Postdoc 1/5/97 NWO/SION2222222222222222222222222222222222222222222222222222222222222222222222222
Dr. T. Kielmann Postdoc 1/3/98 VU11

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Acknowledgements

I am very grateful to the Netherlands Organization for Scientific Research (NWO) and the Depart-
ment of Mathematics and Computer Science forsupportingthis research. I also thank all project
members for all their work and enthusiasm, and for making this project asuccess.Many other people
also made important contributions to the project in various ways, includingAndy Tanenbaum, Frans
Kaashoek, Dick Grune, Reind van der Riet, all the visitors mentioned in Section 10, and the more
than thirty students who did their M.Sc. work as part of the project. Finally, I thank Rob Laan and
Ingrid Pijpers for doing the financial administration of the project.

Publications

Below is a list of ourpublicationsduring the PIONIER project. The list includes a book [7], several
chapters ofbooks(based on papers that werepublishedearlier) [11, 13, 40], a contribution to a special
issue of a journal [2], and many refereed papers. Many papers can be obtainedthroughthe World
Wide Web, seehttp://www.cs.vu.nl/orca/andhttp://www.cs.vu.nl/albatross/.

1. I. Athanasiu and H.E. Bal, ‘‘The Arc Consistency Problem: a CaseStudyin Parallel Program-
ming with Shared Objects,’’7th International Conference on Parallel and Distributed Comput-
ing Systems, Las Vegas, pp.816-821(Oct. 1994).

2. H.E. Bal, ‘‘Evaluation of KL1 and the Inference Machine,’’Future Generations Computer



- 17 -

Systems 9, pp.119-125(1993).

3. H.E. Bal and L.V.Allis, ‘‘Parallel Retrograde Analysis on a Distributed System,’’Supercom-
puting ’95, San Diego, CA (Dec.1995).

4. H.E. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K.Langendoen,T. Rühl, and M.F. Kaashoek,
‘‘Performance Evaluation of the Orca Shared Object System,’’ACM Transactions on Computer
Systems 16(1), pp. 1-40 (Febr.1998).

5. H.E. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K.Langendoen,T. Rühl, and K. Verstoep,
‘‘Performance of a High-Level ParallelLanguageon a High-Speed Network,’’Journal of
Parallel and Distributed Computing (Special issue on Workstation Clusters and Network-based
Computing) 40(1), pp. 49-64 (Jan.1997).

6. H.E. Bal, R. Bhoedjang, K.Langendoen,and F. Breg, ‘‘Experience with Parallel Symbolic
Applications in Orca,’’Journal of Programming Languages (1998).

7. H.E. Bal and D. Grune,Programming Language Essentials, Addison-Wesley,Wokingham,
England(1994).

8. H.E. Bal and M. Haines, ‘‘Approaches for Integrating Task and Data Parallelism,’’IEEE Con-
currency 6(3), pp. 74-84(July-August1998).

9. H.E. Bal, R. Hofman, and K. Verstoep, ‘‘A Comparison of Three High Speed Networks for
Parallel Cluster Computing,’’Workshop on Communication and Architectural Support for
Network-based Parallel Computing (CANPC’97), Lecture Notes in Computer Science, Vol.
1199, D.K. Panda and C.B. Stunkel (Eds.), San Antonio,Texas, pp.184-197,Springer-Verlag
(February1997).

10. H.E. Bal and M.F. Kaashoek, ‘‘Object Distribution in Orca using Compile-Time and Run-Time
Techniques,’’Proc. Conf. on Object-Oriented Programming Systems, Languages and Applica-
tions 1993 (OOPSLA), Washington, D.C., pp.162-177(26 Sept. 1993 - 1 Oct.1993).

11. H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum, ‘‘Orca: ALanguagefor Parallel Programming
of Distributed Systems,’’ pp. 36-51 inProgramming Languages for Parallel Processing, ed.
D.B. Skillicorn and D. Talia,IEEE Computer Society Press(1994).

12. H.E. Bal, A. Plaat, M.G. Bakker, P. Dozy, and R.F.H. Hofman, ‘‘Optimizing Parallel Applica-
tions for Wide-Area Clusters,’’International Parallel Processing Symposium, Orlando, FL,
pp.784-790(April 1998).

13. H.E. Bal and A.S. Tanenbaum, ‘‘Distributed Programming with Shared Data,’’ inDistributed
Shared Memory: Concepts and Systems, ed. J. Protic, M. Tomasevic, and V.Milutinovic, IEEE
Press(1997).

14. R. Bhoedjang, J. Romein, and H.E. Bal, ‘‘Optimizing Distributed Data Structures Using
Application-Specific NetworkInterfaceSoftware,’’ International Conference on Parallel Pro-
cessing, Minneapolis, MN, pp.485-492(August1998).

15. R. Bhoedjang, T. Rühl, and H.E. Bal, ‘‘EfficientMulticastOn Myrinet Using Link-Level Flow
Control,’’ International Conference on Parallel Processing (best paper award), Minneapolis,
MN, pp. 381-390(August1998).

16. R. Bhoedjang, T. Rühl, and H.E. Bal, ‘‘User-Level NetworkInterfaceProtocols,’’ IEEE Com-
puter (Nov. 1998,acceptedfor publication).

17. R. Bhoedjang, T. Rühl, R. Hofman, K.Langendoen,H.E. Bal, and M.F. Kaashoek, ‘‘Panda: A
Portable Platform toSupportParallel ProgrammingLanguages,’’Symposium on Experiences
with Distributed and Multiprocessor Systems, San Diego, pp.213-226(22-23 September1993).

18. J. Carreira, J. Gabriel Silva, K.Langendoen,and H.E. Bal,‘‘Implementing Tuple Spacewith
Threads,’’Euro-PDS’97, Barcelona, Spain (June1997).



- 18 -

19. M. Haines and K. Langendoen, ‘‘Platform-Independent Runtime Optimizations Using
OpenThreads,’’11th International Parallel Processing Symposium, Geneva, Switzerland (April
1997).

20. S. Ben Hassen, ‘‘Prefetching Strategies forPartitionedShared Objects,’’Proceedings of the
29th Hawaii International Conference of System Sciences, Hawaii, pp.261-271(Jan.1996).

21. S. Ben Hassen, I. Athanasiu, and H.E. Bal, ‘‘A Flexible Operation Execution Model for Shared
Distributed Objects,’’Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’96), San Jose, CA, pp. 30-50 (Oct.1996).

22. S. Ben Hassen and H.E. Bal,‘‘Integrating Task and Data Parallelism Using Shared Objects,’’
10th ACM International Conference on Supercomputing, Philadelphia, PA, pp.317-324(May
1996).

23. S. Ben Hassen, H.E. Bal, and C. Jacobs, ‘‘A Task and Data Parallel ProgrammingLanguage
based on Shared Objects,’’ACM. Trans. on Programming Languages and Systems (1998,
acceptedfor publication).

24. S. Ben Hassen, H.E. Bal, and A.S. Tanenbaum, ‘‘Hawk: a Runtime System forPartitioned
Objects,’’ Journal of Parallel Algorithms and Applications 12, pp.205-230(Aug. 1997).

25. R. Hofman, K.Langendoen,and H.E. Bal, ‘‘Visualizing High-Level Communication and Syn-
chronization,’’ IEEE Int. Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP), Singapore, pp. 37-43 (June1996).

26. K. Langendoen,R. Hofman, and H.E. Bal, ‘‘Challenging Applications on Fast Networks,’’
Fourth International Symposium on High-Performance Computer Architecture (HPCA-4),
IEEE CS, Las Vegas, Nevada, pp. 68-79 (Feb.1998).

27. K. Langendoen,R. Bhoedjang , and H.E. Bal, ‘‘Models forAsynchronousMessage Handling,’’
IEEE Concurrency, pp. 28-38 (April-June1997).

28. K. Langendoen,J. Romein, R. Bhoedjang, and H.E. Bal,‘‘Integrating Polling, Interrupts, and
Thread Management,’’Proceedings of Frontiers’96, Annapolis, MD, pp. 13-22 (Oct.1996).

29. M. Oey, K.Langendoen,and H.E. Bal, ‘‘ComparingKernel-spaceandUser-spaceCommunica-
tion Protocols on Amoeba,’’15th International Conference on Distributed Computing Systems,
Vancouver,BC, Canada, pp.238-245(May 30-June 2,1995).

30. A. Plaat, H.E. Bal, and R.F.H. Hofman:,‘‘Sensitivity of Parallel Applications to Large Differ-
ences in Bandwidth and Latency in Two-LayerInterconnects,’’Fifth International Symposium
On High Performance Computer Architecture (HPCA-5), Orlando,FL (Jan.1999,acceptedfor
publication).

31. J. Romein and H.E. Bal, ‘‘ParallelN-Body Simulation on a Large-Scale Homogeneous Distri-
buted System,’’Euro-Par’95 (Lecture Notes in Computer Science 966), Stockholm,Sweden,
pp.473-484(Aug. 1995).

32. J. Romein, H.E. Bal, and D. Grune, ‘‘An Application Domain SpecificLanguagefor Describing
Board Games,’’International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA’97), Las Vegas, NV, pp.305-314(July 1997).

33. T. Rühl and H. E. Bal, ‘‘Optimizing Atomic Functions using Compile-Time Information,’’
Working conference on Massively Parallel Programming Models (MPPM-95), Berlin, pp. 68-75
(Oct. 1995).

34. T. Rühl and H.E. Bal, ‘‘A Portable Collective Communication Library using Communication
Schedules,’’5th EUROMICRO Workshop on Parallel and Distributed Processing, London,
pp.297-304(Jan.1997).

35. T. Rühl and H.E. Bal, ‘‘Synchronizing Operations onMultiple Objects,’’ 2nd Workshop on



- 19 -

Runtime Systems for Parallel Programming, Orlando,FL (March1998).

36. T. Rühl, H.E. Bal, G. Benson, R. Bhoedjang, and K.Langendoen,‘‘Experience with a Portabil-
ity Layer for Implementing Parallel Programming Systems,’’International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA’96), Sunnyvale,CA,
pp.1477-1488(August1996).

37. F.J. Seinstra, H.E. Bal, and H.J.W. Spoelder, ‘‘Parallel Simulation of Ion Recombination in
Nonpolar Liquids,’’ Journal of Future Generation Computer Systems, (Special issue on the
High-Performance Computing and Networking Conference ’97) 13(4-5), pp.261-268(March
1998).

38. A.S. Tanenbaum, H.E. Bal, S. Ben Hassen, and M.F. Kaashoek, ‘‘An Object-Based Approach
to Programming Distributed Systems,’’Concurrency Practice & Experience 6(4), pp.235-249
(June1994).

39. A.S. Tanenbaum, H.E. Bal, and M.F. Kaashoek, ‘‘Programming a Distributed System Using
Shared Objects,’’Proc. 2nd Int’l Symposium on High-Performance Distributed Computing,
Spokane,WA, pp. 5-12(1993).

40. A.S. Tanenbaum, M.F. Kaashoek, and H.E. Bal, ‘‘Using Broadcasting to Implement Distributed
Shared Memory Efficiently,’’ pp.387-408in Readings in Distributed Computing Systems, ed.
T.L. Casavant and M.Singhal, IEEE Computer Society Press(1993).

41. K. Verstoep, K.Langendoen,and H.E. Bal, ‘‘Efficient ReliableMulticast on Myrinet,’’ 1996
Int. Conference on Parallel Processing (Vol. III), Bloomingdale,IL , pp. 156-165 (August
1996).

42. G.V. Wilson and H.E. Bal, ‘‘Using the Cowichan Problems to Assess theUsability of Orca,’’
IEEE Parallel and Distributed Technology 4(3), pp. 36-44 (Fall1996).


