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1. Introduction

This report summarizes the research results of the project “Programming Parallel and Distributed
Computer Systems,” whictook placeat the department of Mathematics and Computer Science of
the Vrije Universiteit during 1 January 1993 to 30 JUr®®8. This project wagundedby the Nether-

lands Organization for Scientific Research (NW@jough a PIONIER grant (PG$2-382)awarded

to Henri Bal.

Parallel (or high-performance) computing is being used more and more often for solving com-
putationally intensive problems. Unfortunately, developing correct, portable, and efficient parallel
software is a difficult task, which limits furtheacceptancef parallel computing. The goals of the
PIONIER project are to ease the task of parallel programming as much as possible, while also achiev-
ing good performance and higiortability of parallel programs. These three goals (ease of use, per-
formance, angbortability) are often conflicting, but all are crucial to tlsecces®f parallel program-
ming.

Our research followed three directions: to find the right level of abstraction (or model) for a
parallel languageto study efficient and portable implementation techniques for pard#lejuages,
and to evaluate all our idegaboutmodels and their implementation) using realistic applications.
The research therefore has aspects of:

- Programmindanguagelesign and programming models.
- Systems software (compilers, runtime systems, communication software).
- Parallel applications.

A distinguishingfeature of our research program is that we pay considerable attentieactoof
these areas. Many other parallehguagesave been designed that were implemented only in a pro-
totype way (or not at all) and that have been used only for trivial applications.

As a result, our work has obtained a highibility, resultingin many international contacts (see
Section 10). The PIONIER project has resulted in sevptddlicationsin top journals with a high
impact, includingACM Transactions on Computer Systems, ACM Transactions on Programming
Languages and Systems, |EEE Computer, and three papers iftEE Concurrency. Thesucces®f the
project also resulted in two major research grants from the Vrije Universiteit (VU),fumding a
group of substantial size for the next four years and @neding a large-scale parallel system. The
VSNU research evaluation gave the highest possible ranking for the research of the Computer Sys-
temsgroup,in which the PIONIERgroupparticipates.

The report is structured as follows. Section 2 gives sdraekgroundinformation, including
our earlier work on parallelanguagesand the hardware infrastructure used during the project. The
rest of the report consists of three parts, discussing systems software (Sections 3-5), applications
(Section 6), and programmirlgnguagedesign issues (Sections 7-9). In Section 3 we discuss a new
Orca system, which is a cornerstone of our research. Section 4 examines parallel programming on
high-speed networks. Section 5 discusses wide-area parallel programming. Experience with parallel



Orca applications is described in Section 6. This work resulted in many new insights, which stimu-
lated further research on programming models, as described in Sections 7 and 8. Seciilime8

our work on very high-levellanguages.In Section 10, welook at our cooperationwith other
researchers. Finally, in Section 11 we analyze the outcome of the projeckaElproject, the pri-

mary researchers working on the project are given. Prof. Bal supervises all projects. A list of all the
members of the PIONIERroupis given in Appendix A.

2. Background

Below we describe our earlier work on the Otaaguageand welook at the hardware infrastructure
used in the project.

The Orca language

Before the PIONIER project started, we already had some experience in designing and implementing
parallel languages.In particular, we developed the Ordanguagewhich is a procedural, object-
basedlanguagefor parallel programming on distributed systems. The design and prototype imple-
mentation weralonemainly by Henri Bal and Frans Kaashoek, as part of their Ph.D. research (during
1987-1992).Since Orca plays an important role in the PIONIER project, we describe it briefly here.

Most parallellanguagesnd libraries use either message passing or shared variables for express-
ing communication. Unfortunately, message passing is difficult to program, while shared variables
require shared memory for an efficient implementation, which is hard to implement on a large-scale
system. The idea behind Orca is to provide a programming model similar to shared variables, but
designed in such a way that it can be implemented efficiently on (scalable) distributed-memory sys-
tems.

The basic model of Orca is that of a collection of processes communictitinggh shared
objects. Shared objects are variables that canaseessedy multiple processes. Unlike normal
shared variables, shared objects are manipulated exclusively by user-defined, high-level operations,
which are expressed using abstract data types (see Figure 1). All operations on an object are exe-
cuted indivisibly (atomically), anéachoperation is applied to a single object. The main advantage
of the Orca model is that it hides the distributed nature of the system from the user. The shared object
model is close to shared variables, so for a programmeolis as if all processors arennectedy a
shared memory, which is much easier to program than distributed-memory machines. The shared
object model, however, can be implementeithout usingphysicalshared memory. Orca can there-
fore be described as aject-based distributed shared memory (DSM) system [4].

Shared
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Figure 1: Two shared objects with user-defined operations.

A prototype implementation of Orca wamslilt on top of the Amoeba distributed operating sys-
tem, which wasunningon a parallel machine at the VU [11,13, 39, 40]. An important weakness in
this prototype implementation was its lack pdrtability to other systems. The runtime system, for
example, depended on tmeultithreadingand communicatiorprimitives provided by Amoeba. In



addition,the prototype compiler was rather inefficient.

During the PIONIER project, we benefited in several ways from this earlier work. We studied
the Orca programming model in depth and used it to develop more general object-based models.
Also, we used Orca as a research vehiclestodyingadvanced implementation techniques for paral-
lel language®n modern parallel machines. These technigues include runtime systems, compilers, and
network communication software. addition,we also used the Orca system as a tool for implement-
ing several parallel applications. We have developed numerous parallel applications in Orca, often
together with people from other research areas (e.g., Physics [37] and Al [3]). Finally, we have
applied ideas from the Orca system to other programn@nguagesincluding Java, Linda, and SR.

Hardware infrastructure

A significant part of our research is experimental and requiiasesgo a parallel computer whose
systems software we are able to change. The machines we used can be classified as costedled
computers (or Networks of Workstations). Unlike supercomputers, clusters dvailt entirely from
off-the-shelfcomponents.Using standarcomponentsnstead of specially-designed processors and
interconnectsesults in a dramatic reduction in cost. Moreover, the advances in microprocessor tech-
nology (e.g., the Pentium Pro, PowerPC, and DEC Alpha) allow clusters to obtain high processing
speeds.

We have used two cluster computers (owned by our department) during the course of the pro-
ject. The first system, called th2oo*, is a collection of 80 single-board computers (see Figure 2)
eachconsisting of a 50 Mhz MicroSparc with 32 Mbyte local memory. All machinescareected
by a 10 Mbit/sec Ethernet. This system runs the Amoeba distributed operating system that was
developed by prof. Tanenbaungsoup.

Figure 2: The Zoo: 80 single-board computers (MicroSparcs) connected by Ethernet.

The main problem with this type of system is the high communication overhead of the Ethernet
network. For thesuccessoof the system, we therefore decided to use a modern, high-speed network.
To determine which networtechnologyis most suitable for parallel computing, the PIONIgRoup
built an experimental testbed consisting of therodeclusters that are identical except for the inter-
connectionnetwork; the three clusters use Fast Ethernet, Myrinet, and ATM, respectively. We did

* Becauset runs Amoeba, Orca, Panda, Hawk, and other creatures.



performance measurements on communication benchmarks and applications, showing that Myrinet
obtains the highest performance of these three networks [9, 26]. We therefore used Myrinet as the
high-speed network for theuccessoof the Zoo.

The secondsystem we used is a cluster computer consisting of 128 PCs. Unlike with the Zoo,
the nodesare complete PCs, including a motherboard, hard disk, and PCI cards.n&debontains
a 200 MHz Pentium Pro, 128 MByte of memory, and a 2.5 Ghyte local disk. All boards are con-
nected by two different networks: Myrinet (a 1.8bit/secnetwork) and Fast Ethern€t00 Mbit/sec
Ethernet). Myrinet is used as fast user-leirgerconnectwhile Fast Ethernet is used by the operat-
ing system. Myrinet uses System Area Netwtgkhnology.consisting of LANai-4.linterfacescon-
nected by 8-port crossbar switches. The switchescarsectedusing a 2-dimensional toruspol-
ogy. The entire system is packaged in a single cabinet andbudsby Parsytec (Germany). The
system runs the BSD/OS operating system from BSDI.

This cluster computer is part of a wide-area parallel system, called the Distributed ASCI Super-
computer (see Section 5). Anitial 64-nodecluster was financed partly by an equipmémntd from
NWO (awarded to the ASCI researskehool),partly by the VU, and partly by the PIONIER grant.
This machine was installed in May997. In May 1998,the cluster wasipgradedo 128nodes using
a research grant from the VU given to the departments of Mathematics & Computer Science, Physics
& Astronomy,and Chemistry. These departmemtdl do joint research on cluster computing using
this 128-nodemachine. Figure 3 shows a picture of th28-nodecluster, which is called th8eta-
cluster.

Figure 3: The Betacluster: 128 Pentium Pro PCs connected by Myrinet.

3. Theportable Orca system
Project members: Bhoedjang, Langendoen, Riihl, Hofman, Jacobs, Verstoep.

An important result of the PIONIER project is a new, high-performance Orca system that is highly
portable andnodular. Unlike the original prototype system mentionaldove,the current Orca sys-

tem runs on a wide variety of machines and has been used for many applicatiaudition, the
software system is a cornerstone of our researclanguagemplementation techniques, communi-
cation software, and applications. Below, we describe the design of the system and the most impor-
tant lessons that were learned from building it. Also, we discuss tahguageshat we have imple-
mented using certaimodulesfrom the Orca system, and weok at a performance visualization tool

that is part of the system.



Design
One of the key ideas in the new Orca system is to hide all aspects ohttelyingoperating system

and hardware in a virtual machine, which is callednda[4,17]. The structure of the system is
shown in Figure 4.

Orca compiler
Orca runtime system
Panda

Operating system and hardware

Figure 4: Structure of the Orca/Panda system.

The Orca system consists of three layers, which are implemented on top of the operating system (OS)
and/or the hardware. The lowest layer in our system is the Panda virtual machine, which provides a
certainfunctionality to the upperlayers, using a well-definethterface.The primitives supportedby

Panda include lightweight threads, point-to-point message passing, remote procedure call (RPC), and
totally orderedgroup communication (broadcast). We have developed a simple and flexible user-
level threads package, called OpenThreads [19], together with Prof. Matthew Haines (University of
Wyoming). Inaddition,we havedoneextensive research on high-performance communication proto-
cols, in particular for totally orderegroupcommunication and RPCs.

Orca’s shared objects are implemented bydbeondayer, which is the runtime system (RTS).
The Orca RTS is implemented on top of Panda. Unlike the original Amoeba RTS, the Panda-based
RTS does not depend in any way on the OS; instead, it uses onlyrithéives provided by Panda.
The RTS layer therefore only is concerned with managing objects, and not with doing communica-
tion. The most important optimization in the RTS isriplicate objects that are read very often. The
advantage of replication is that read-only operations can be performed on thecépsawithout
doing any communication. The RTS uses Panda message passing to implementimgouattons
on non-replicatedbjects and broadcasting tpdateall copies of a replicated object when the object
is changed. Consistency of the replicas is obtaitiedughthe total-ordering semantics of Panda’s
broadcasprimitive.

The highest layer in the system is the Orca compiler. During the PIONIER project, we have
redesigned the original prototype Orca compiler. The new compiler is much more portable (it gen-
erates ANSI C code as output). Also, the cgaeducedby the compiler is of highguality, so Orca
programs obtain a performance close to that of C. The compiler performs several optimizations,
including common subexpression elimination, code motitmpp-unrolling, and live-variable
analysis. The compiler translates operations on objects by generating calls to the Radslitibm, it
generates information (e.gaboutobject usage) that the runtime system uses to determine which
objectsshouldbe replicated [10].

A major advantage of the system is ftexibility and modularity. The underlying platforms
differ significantly in thefunctionality they provide. Our software is structured in such a way that it
can exploit thefunctionality provided by theunderlyingplatform without giving up portability. For
example, if the message passipgimitive provided by theunderlying OS or communication
hardware is reliable, Pandedll make use of that. If it is unreliable, Panddl run its own protocol to
make message passing reliable.

In addition, virtually all our software runs in usespace(outside the OS). The compiler and
RTS always run in usespace Panda can be configured to use thaltithreadingand communication
primitives of the OS, or to run partly or entirely in usepace.On modern high-speed networks such
as Myrinet, for example, Panda runs entirely in usgaceand directlyaccessethe network device,
which greatly reduces the overhead of communication calls. Moreoverspaegprotocols can be



changed much more easily than OS protocols.

We have verified thesuitability of using a layered approach for obtainipgrtability by imple-
menting the Orca system on a variety of platforms. We have ported the system to several operating
systems (including Solaris, BSD/OBnux, Amoeba, and Parix), parallel machines (the CM-5, SP-2,
Parsytec GCel, Parsytec PowerXplorer, Meiko CS-2), and networks (Ethernet, Fast Ethernet,
Myrinet, ATM). Our experiences in porting the Orca system indicate that our approgartability
indeed issuccessful. Typically, only a small part of the Panda layer has to be adapted to a new
environment. The compiler, RTS, and Orca application programs remain unchanged.

Evaluation of the Orca system

We have made ¢horoughevaluation of the Orca system and of our design choices. The results of
this studywere publishedin a paper irACM Transactions on Computer Systems [4]. Below, we sum-
marize this work.

Most Distributed Shared Memory (DSM) systems replicatec@mhe)shared data. Orca differs
from most other DSMs, however, in the way replicas are kept consistent. If a write operation (i.e., an
operation that changes the shared data) is applied to a replicated object, the Orca system must make
sure that the replicas remain coherent. Orca usesit@-updateprotocol with function shipping:
write operations on shared objects are broadcast to all processors and are applied to all copies of the
object, thusupdatingthe replicas. Virtually all other DSMs use an invalidation approach (i.e., they
delete the replicas after a write). Our performance analysis has showwritexupdatingis a good
approach to implement an object-based DSM, especially if it is used in combination with other tech-
niques that avoid replicating objects with a low read/write ratio.

Another interesting aspect is the way the Orca system determines which objects to replicate and
where to storenon-replicatedbjects. The Orca runtime system uses informatiboutobject usage
provided by the compiler and also maintaishgnamicstatistics. By combining this information, the
runtime system makes its decisioaboutobject placement. An analysis of ten applications shows
that the system is able to make near-optimal decisions in most cases. Most programs achieve a
speedupvithin 1% of that obtained by a version in which the programmer makes all decisions.

An important insight from our work is that two decisions have hgor@oundimpact on the
design and performance of the Orca system. The first decision wasdessshared data only
throughabstract data type operation8lthoughthis property requires work from the programmer, it
is the key to a high-performance implementation. It often reduces the communication overhead,
becausean operation always results in only one communication event, evenaitdessedarge
chunksof data. Asecondmportant decision was to let the Orca system replicate only those objects
that have a high read/write ratio. Since replicated datanaittéen relatively infrequently, it becomes
feasible to use arite-updateprotocol for replicated objects.

As part of the performance evaluation of Orca, we have dtmoea quantitativecomparison
between Orca and two other distributed shared memory systems, Treadmarks and CRL. For this
experiment, we ported these two systems to the Betacluster. The comparison shows that the Orca
programs generally have a lower communication overhead and bptedup.

Other parallel programming systems

Althoughthe Pandaportability layer was originally designed for Orca, nsodularstructure allows it

to be used for implementing othEmnguagess well. The advantage of using Panda as an intermedi-
ate layer is that it results in portable, efficient, amdbdularsystems. We have also implemented
several other parallel programmingnguagesand libraries on top of the Pandaterface,some in
cooperatiorwith other researchers:

- The SR (Synchronizing Resourcdanguagedeveloped at the University of Arizona and the



University of California at Davis was implemented on our Panda system by Greg Benson from
UC Davis.

- A Linda system (MPI-Linda) designed by Joao Carreira (University of Coimbra in Portugal)
was ported to Panda [18].

- We ported MPI and PVMpopularmessage-passing libraries) to Panda.

- Three M.Sc. students (Ronald Veldema, Rob Wwieuwpoort,and Jason Maassen) imple-
mented Java on top of Panda, including a native Java compiler and a fast Rdatbtel Invo-
cation scheme.

Part of this work is described in a conference paper [36]. The conclusion is that our Panda-based
approach indeed is suitable for implementing a variety of systemsad8litionaladvantage of this

work is that we get many applicationgitten in otherlanguageshat we also use for our performance
studyof high-speed networks.

Perfor mance visualization

High-level languagedike Orca easevriting of parallel programs by increasing the distance between
the programming model and the hardware. Unfortunately, this also makes it more difficunltéo-
stand the performance of parallel programs. To ease perforntkateeygingit is essential to provide
tools that present the user with performance data atahguagelevel. We have designed teace
package and a viewing tooQrcshot, that address this issue for Orca. Orcshot is based on the
Argonnetool upshot; we have adapted this tool to Orca and we have made various extensions to
it [25].

The Orcshot tool takes asputatrace file that is generated bsunningan Orca application with
a specialracepackage. Theracefile contains complete and detailed information on the state transi-
tions ofeachprocess and on all system-level communication events and all Orca abjpEiseOn
the systems where Orca runggging of an event isaccomplishedn a few microsecondsso tracing
is relatively non-intrusive(except forwriting the events to disks, which occuogcasionallyand is
made visible to the user).

The tracefiles are visualized with Orcshot (see Figure 5). Orcshot's main display is a Gantt
chart, with timealongthe horizontal axis and threads (processdehgthe vertical axis. The Gantt
chart can be scrolled in the time domain and arbitrarily zoomed. Events are displayed dsost@s|l
clicking on an event box opens up a lardmrx, containing the complete data of the event. Orcshot
also allows the user to display only certain types of events. For instance, all events related to one
specific object can be selected so the user can focus on this olfjdditionally, Orcshotsupports
optional visualization of lower-level (communication) events. This level is used mainly by the
developers of the Orca system. It can also be used by application programmers, butdivedge
of the languagdamplementation is required. Finally, the taglipportsuser-defined events that signal
progress or signify relevant states of the program.

4. Paralld computing on high-speed networks
Project members. Bhoedjang, Langendoen, Riihl, Hofman, Jacobs, Verstoep.

The most important difference between a supercomputer and a cluster computer is the communication
speed. Supercomputers like the T3E and SP-2 use specially designed, highrgpeszhnects,
whereas most cluster computers wdkthe-shelfLANs (e.g., Ethernet). During the past few years,
however, several netwotlechnologieshave been developed that obtain performance close to that of
supercomputer networks. Examples of such networks are ATM, Myrinet, SCI, and ServerNet.
Unlike the proprietary networks used in supercomputers, these new networks are generally available.
They are particularly interestingchnologieshecausedhey can bridge the performance gap between

a supercomputer and a cluster. This becomes clear by comparing the two systems used for our
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Figure 5: Example output from Orcshot.

research (see Section 2). The Zoo is basedraditional network technology(Ethernet), for which

our Panda communication software achievegndtriplatencies over anillisecond.The Betacluster

uses the much faster Myrinet, for which we achieve a minimwuondtrip latency of 20
microseconds.The latter system achieves a communication performance that is close to that of
supercomputers like the SP-2, but at a fraction of the cost.

The main problem with high-speed networks, however, issthittvare needed to exploit their
potential power. With low-latency networks like Myrinet, the softwand become the communica-
tion bottleneck.Traditional software designed for Etherneill have a relatively high overhead on a
high-speed network. Typical communication protocols or remote objgotationmechanisms have
an overhead ofiundredsof microsecondswhereas modern networlssipport(one-way) latencies on
the order of 1-10microseconds.Therefore,novel communication software is needed for fast net-
works.

To overcome the problem of high software overhead on high-speed networks, several research
groupshave resorted to low-level communication models that are easy to implement but hard to pro-
gram. An important part of our research is to investigate if a high-level programiammagdike
Orca can be implemented efficiently on a high-speed network. We have developed various optimiza-
tions for the Orca system. Our basic conclusion from this work is that a high-performance implemen-
tation is possible, but that software optimizations at all levels of the system are required to obtain a
high performance. We have developed optimization techniques for all layers of our system, including
the compiler, runtime system, communication protocols and even the software of the network inter-
faceprocessor [5, 15, 27, 28, 41]. Below, we describe some of this work.

An example of asoftware-bottlenecks the operating system. Witthaditional communication
protocols, the network device is managed by the operating system kernel aockissedrom user
programsthroughsystem calls. On a high-speed network, however, the time for a system call may
alreadyexceedhe message latency. Therefore, much research is lbeingon user-level communi-
cation protocols. We have implemented Panda’s threads and protocol stack spasgi9, 29]. On
high-speed networks, the netwdrkerfacealso is mapped into usspacethus avoiding all operating
system overhead.

An important problem with user-level protocols is how to retrieve incoming messages from the
network and handle them. Theaditional solution is to let the network device generate an interrupt,



but the costs of delivering interrupts to a user process (#umughUnix signals) often are very high
(exceedinghe message latency). An alternative mechanism is tgabieg, in which case the appli-

cation periodically checks if the network has a message availRbléng is notwithoutits problems

either, however: it adds a burden on the programmer and it is difficult to ggbdtieg frequency

right. We havedoneextensive research on this issue, and we have designed new solutions that use a
combination ofpolling and interruptswithoutanyinvolvementfrom the programmer [16, 28].

Our research on networkterfacesoftware focused on what kind of abstraction the low-level
communication softwarehouldprovide to allow higher-level systems (e.tapnguagesjo be imple-
mented efficiently. We have identified six issues that determine the performance and semantics of a
communication system: data transfer, address translation, protection, control treglgbility, and
multicast[16]. We havedoneresearch in several of these issuesultingin a new networknterface
protocol for Myrinet, called LFC [15]. One issue we hdweekedat in detail is broadcast communi-
cation. We have devised sevemabvel strategies for implementing broadcast communication on
Myrinet by exploitingthe programmabilityof the networkinterfaceprocessor [15, 41].

As a result of this research on compilers, runtime systems, and communication software, we
have shown that it is possible to build a programming system for high-speed networks that meets the
(often conflicting) goals of ease of use and efficiency. Orca provides a high level of abstraction to
the programmer, butill obtains a high performance. On the Betacluster, for example, the latency of
a remote objectnvocationin Orca is 39microseconds.In addition,we have applied some of our
implementation techniques to other programmiagguagesand libraries. In this way, we have
obtained high-performance implementations of MPI, PVM, and Java. For example, our implementa-
tion of Java Remotd&lethodInvocation(RMI) achieves a best latency (farethodswithout parame-
ters) of 35microsecondsover Myrinet, which is at least an order of magnitude faster than other
implementations of RMI.

5. Wide-area parallel computing
Project members: Plaat, Kielmann, Hofman.

An important emerging trend in parallel computing is to combine computational resources at different
locations into integrated, large-scale parallel systems. Such wide-area parallel systems are usually
referred to as metacomputers or computational grids. Several large projectidyang software
infrastructures for metacomputers, such as the LegiornGlodusprojects in the US.

In 1997, the Dutch researctlschool ASCI (Advanced School for Computing and Imaging)
started a new national project in this research area. The goal of this project is to build a wide-area
distributed supercomputer frooff-the-shelfcomponentsand to use this system for joint research on
parallel and distributed computing. The wide-area system is called DAS (Distributed ASCI Super-
computer) and wakindedin partthroughan equipment grant of NWO/SION.

The DAS system consists of four clusters, located at four A8t@Versitiesithe Vrije Universi-
teit, the University of Amsterdam, the University of Leiden, and Delft Universitf@¢hnology(see
Figure 6). The four clusters amonnectedoy a wide-area ATM network (Surfnet-4). Each local
cluster consists of a number of Pentium Pro processonsiectecby Myrinet. Three of the clusters
have 24 processomach;the cluster at the VU (the Betacluster) has 128 processors, as described in
Section 2.

The PIONIER group played an important role in the design of the DAS system and also
developed much of the systems software for the DAS clusters. Several other researchers in ASCI
have parallel programs based on PVM or MPI, and use our implementations of these libraries (and
our Panda communication software).

In 1997,0ur researclgroupstarted a new project on wide-area parallel compu¢fogdedpar-
tially througha SION grant), using the wide-area DAS system. The goal of this project, called
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Figure 6: the Distributed ASCI Supercomputer (DAS).

Albatross, is to studylanguagesand applications (and their performance) for wide-area parallel sys-
tems. In contrast, most other metacomputing projects focus on issues like fault-tolerance, 1/O,
resource management, and heterogeneity.

In the first phase of the Albatross project, we have studied the performance of parallel applica-
tions on wide-area systems such as DASdistinguishingfeature of wide-area systems is that the
latency and bandwidth of the wide-area network (WAN) are orders of magnitude worse than those of
local networks. On the DAS system, for example, tbandtrip latency of the local area network
(Myrinet) is about 20 microsecondswhile the wide-area network has a latency of several mil-
lisecondsLikewise, the measurethroughputis about50 Mbyte/sec for Myrinet and 0.75 Mbyte/sec
for the WAN. So, there is a performance gap on the DAS systeabotittwo orders of magnitude
between the LAN and the WAN. Most applications used for metacomputing therefore are embarrass-
ingly parallel (i.e., they barely communicate at all). Unfortunately, this severely restricts the type of
application that can be used. An interesting issue thereforesimittythe impact of this “gap’ on the
performance of more challenging parallel applications (that do communicate).

We have implemented severabntrivial Orca and MPI applications on the wide-area DAS sys-
tem and we have analyzed their performance [12,30]. The results show that many applications
experience a dramatic performance degradation when run on a wide-area system, due to the slowness
of the WAN links. We have subsequently studied how to optimize these programs, by taking the
hierarchical structure of the system irdocount. The optimizations we used reduce communication
traffic between clusters (i.e., over the WAN) or hide intercluster latency. The optimizations substan-
tially improve performance of most applications. As a result, most of the applications run faster on
multiple DAS clusters than on a single cluster, showing that the range of applications suited for a
meta computer may be much larger than previously assumed. In the next phase of the Albatross pro-
ject, wewill studyprogramming systems that ease the implementation of wide-area parallel applica-
tions. For example, we are currently designing a library of collective communicptiaritives for
hierarchical wide-area systems.



6. Parallel applications
Project members: Wilson, Romein.

An important goal of our work is to have many people use the Orca system for real applications. We
believe that actual user experience is important to assess the strengths and weaknesses of our
approach. Below, we summarize the experiences obtained so far.

Dr. Greg Wilson did an extensiv&udyon theusability of Orca while he was a member of our
group.He used a suite of applications (that he had developed earlier) for assessimgakildy of
parallel programming systems fariting parallel programs. In contrast, benchmark suites such as
SPLASH aim to assess only the performance of programming systems and not their ease of use.
Wilson'’s suite, called th€owichan problems, has been selected carefully to cover a wide spectrum
of application domains and parallel programming idioms. The suite includes numerical as well as
symbolic applications. The applications are: the Turing rpmlygonoverlay, image skeletonization,
skyline matrixmultiplication,game-tree search, and active chart parsing.

During the experiment, six different studemachimplemented one of the Cowichan problems
in Orca, as a project for their M.Sc. thesis, supervised by Wilson. Wilson used this work to do a
thoroughevaluation of theusability of the Orca system. The lessons learned from this research are
described in a joint research papmrmlishedn |EEE Parallel & Distributed Technology [42].

We are collaborating with dr. Spoelder of the department of PhysicAatrdnomyof the VU
on parallel applications. One application we implemented in Orca is a Monte Carlo simulation of
high energy particles in @monpolarliquid. The results of this work are described in a journal
paper [37]. Another application is spline-based modeling ofgsindaceof the human cornea. This
technique is used in a system (designed by the department of Physiés@modomyand the depart-
ment of Medicine of the VU) for measuring the shape of an eye. A problem with this application is
that the spline computations taldoutan houron a single workstation, whereas a doctor using the
equipment would like to see the result almost immediately. We have reduced the computation time
by developing a parallel Orca program for solvimgnlinearestimation problems.

Several other M.Sc. students awiditing researchers have worked on various Orca applications,
including neural networks [38], retrograde analysis [3N6}pody simulation [31], the arc consistency
problem [1],DNA sequence comparison, ray tracing, automatic test-pattern generation for combina-
torial circuits, and CYK-parsing usindynamicprogramming. Finally, we have implemented most of
the SPLASH applications in Orca.

We have learned several important lessons from all this work. The basic conclusion is that Orca
achieves its primary goal of being easy to learn and use [42]. Orca’s shared object model signifi-
cantly simplifies parallel programming, by hiding th@derlyingcommunication hardware from the
programmer. Also, this model is easy to learn, since it is based on abstract data types, with which
most programmers affamiliar. In addition,most Orca applications obtain reasonable or good perfor-
mance(speedups).

However, Orca’s model and implementation also have some shortcomings. The main problems
with its programming model were:

- It is difficult to write data-parallel applications in Orcdecauseits shared data structures
(objects)cannotbe partitionedamongmultiple machines.

- The model allows operations to be applied to only a single object, which is a severe restriction
for several applications.

These observations stimulated further research on the Orca model, as described in the next two sec-
tions.



7. Data-parallel Orca
Project members: Ben Hassen, Jacobs, Riihl.

Like many other paralldnguagesQrca is based otask parallelism. With this model, the program-

mer can create any number of parallel tasks (processes) that can interact in arbitrary ways. Other
parallellanguagege.g., High-Performance Fortran, pC++) wiaa parallelism. Data parallelism is

based on applying the same operation in parallel on different elements of a data set. Unlike with task
parallelism, all processors conceptually execute the same program, on different data elements. The
advantage of data parallelism is that it uses a simpler model. The programmer maesgpasisible

for specifying the distribution of data structures and the compiler takes care of generatimgctse

sary code for communication and synchronization. Unfortunately, the simple model of data parallel-
ism also makes it suitable only for a restricted class of applications. In particular, applications that
use irregular data structures often do not match the model and impose difficult problems on both the
languagedesigner and compiler writer. Such applications are often easier to write in a task parallel
language.

Since both task and data parallelism thus have their strengths and weaknesses, it is attractive to
integrate both forms in one model. Several research projects are working on such an integration [8].
We havedoneresearch on adding data parallelism to Orca. The key idea is to allow array-based
objects to bepartitionedand distributecamongmultiple machines. An operation on suclpartitioned
object is executed in a data-parallel way, on the different elements of an array. The new object model
is much more general than the original model, angportssingle-copy,replicated, angartitioned
objects.

The result of this work is danguagethat supportstask and data parallelism in a clean way,
using a simple model. We have extended the Orca compiler with thestanguageconstructs. We
have developed a runtime system (called Hawk) for data parallel objects and we have integrated it in
the original Orca RTS. Also, we have implemented several applications in the extiEmigchge.
Data-parallel applications indeed are much easier to write in thelaeguageln addition, several
applications exist that can exploit task and data parallelism in a single program. Such applications are
hard to express in languagethat onlysupportsone form, but they turned out to be easy to write in
the newlanguage.This work is described in several papers [20, 21, 22, 23, 24].

8. Advanced object-based programming models
Project member: Riihl.

An important restriction in the original Orca model is that it allows atomic operations to be applied to
only a single object. This restriction was impodsetauseét allows an efficient implementation on a
distributed system. For several applications, however, this restriction complicates programming. We
have designed two extensions to the basic Orca model that address this problem. One extension,
called atomic functions, allows the programmer to define functions that are applied indivisibly to a
collection of objects [33]. Another extensionested objects, allows objects to be structured using
multiple sub-objects, which may be located on different machines. Operations on the entire (struc-
tured) objectwill execute indivisibly, even if thegccessnultiple sub-objects on different machines.

To a certain extent, the data-parallel extensions described in Section 7 also have this property, but (as
in most data-parallelanguages}hey restrict objects to contain only array-based data structures.
With nested objects, arbitrary data structures can be defined.

The new models greatly enhance the expressiveness of the original Orca model, but also make
an efficient implementation much more challenging. We have designed a flexible framework for
implementing these (and possibly other) extensions. The new system also uses the Panda virtual
machine as its lowest layer, to provide basic communication and thpeediives.On top of Panda,
the new system defines the following layers:



- A layer with high-level communicatioprimitives(e.g., collective communication).

- A generic runtime system, which providgsrimitives (e.g., data dependency resolution, con-
tinuations) that are useful for implementing several different programming models.

- A number ofmodel-specific runtime systemsgachof which implements an object model (e.g.,
single-copyobjects, replicated objects, nested objects, atomic functions).

The implementation modainderlyingthe system is calledollective computation. The idea of this
model is to have all processors participate in operations (e.g., atomic functions), so they can together
decide on the best execution of the operation and minimize the communication overhead.

We have also developed a new mechanism, cailteamunication schedules [34], which can be

used to implement collective communication efficiently. With communication schedules, the com-
munication pattern of a collective operation is expressed (by the programmer or a compiler) before
the operation is executed, using a set of simple functions. The runtime system uses this communica-
tion pattern to implement the collective operation as efficiently as possible. It can, for example,
decrease the number atknowledgemenimessages needed or eliminate the overhead of context
switching during data forwarding [34]. We have used communication schedules for implementing
several collective operations (similar to those used in the MPI standard).

Anothernovelidea in the implementation concerns the synchronization of operationsutii
ple objects. To address this problem, we have developed an abstractionvezdied [35], which is
a function that is executed by a collection of processors. We have applied this idea in a runtime sup-
port system for atomic functions and nested objects.

9. Very high level languages
Project members: Romein, Plaat.

Another research direction we are taking is that of very high level, application-orielategijages

with implicit parallelism. The idea is to define application-specifimguageghat are very easy to

use for one application domain. THanguage’'scompiler usesknowledgeaboutthe application
domain to automatically generate a parallel program from the source code. The advantages of this
approach are ease of use and automatic parallelization. The disadvantage is feclodity, since
eachlanguages suitable for only one application domain.

As part of this project, we have developed a very high-ldaebuagefor game playing, called
Multigame [32], in which board games like chess, checkers, and othello can be expresddditi-A
game program essentially is a formal description of the rules of a game. From this description, the
Multigame compiler automatically generates a parallel program wiltplay this game (see Figure
7). The Multigame system uses four different parallel search strategies, based on the alpha-beta
search,MTD(f), negascout, and IDA* algorithms. laddition, the system provides a number of
well-known heuristics, such aganspositiortables, the history heuristic, and iterative deepening. An
important issue is how to reduce the communication and search overhead of a parallel game tree
search program.

As an example, consideranspositiontables, which store values pbsitionsthat have already
been analyzed. kachprocessor keeps a privatenspositiortable, therewill be no communication
overhead. However, processaril then not have anknowledgeaboutwhich positionshave been
analyzed by other processors, which leads to a large search overhead. If, on the other hand, all tran-
spositiontable information is communicatedmongall processors, this search overheadl be
avoided but the communication overheadl be large. We have studied this problem in detail, and
investigated various alternatives (including replicated paditionedtranspositiortables).

A related idea that we investigated is to exploit programmable netwbekfacesto speed up
transpositiortable operations [14]. Several modern networterfacese.g., Myrinet) contain a pro-
grammable processor. Many researgnoups have optimized message passing libraries by
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Figure 7: structure of the Multigame system.

redesigning the software (firmware) of this processor. We have investigated firmsupportfor
application-specific shared data structures, in particiméarspositiortables. We have developed cus-
tomized software that runs partly on the network processor and partly on the host. The customized
software greatly reduces the overhead of interactions between the ndtveraceand the host.

Also, the software exploits application semantics to obtain a simple and fast communication protocol.
Our results show that fopartitionedtables the maximum number of data structure operations per
secondper processor is increased frdth,000to 72,000.In addition,a performance improvement up

to a factor 2.5 is achieved at the application level.

10. Contacts with other researchers

During the project, we haveooperatedvith numerous researchers in the Netherlands and elsewhere.
Prof. Frans Kaashoek (MIT Laboratory for Computer Science) has worked with us on the Orca and
Panda systems for many years and has contributed many valuable ideasoopératedvith the

group of Prof. Tanenbaum of our department on communication and operating sgsigmortfor
parallel languagesalso they developed the Amoeba distributed operating system, on which we did
most of our experimental work during the first four years of the project. Dr. Dick Grune of our
departmentooperatesvith us on theMultigameproject. Dr. VictorAllis worked with us on parallel
retrograde analysis while he was in the gtbupof the VU. In1996,we started an extensive colla-
boration with the Physics Applied Computer Sciemgeeupof the Department of Physics and Astron-
omy of the Vrije Universiteit, to work on parallel applicationsghysics,as described in Section 6.

Several scientists from the US and elsewhere stayed for a few months in our regearph
Prof. Matthew Haines (University of Wyoming) spent one month (Mak®B6)in our groupto ini-
tiate joint research on thread packages andamguageswith integrated task and data parallelism.
This work so far resulted in a joimpublicationin an IEEE journal [8] and a conferencpublica-
tion [19]. Greg Benson (UC Davis) spent four months (MatisfoughJune1996)in our group.He
used our Panda system to design a portable implementation of then§Ragd36]. Joao Carreira
(University of Coimbra) visited ougroupfor one month (Novembet996)to implement a Linda sys-
tem on top of Panda [18]. Matt Welsh (currently at UC Berkeley) ported the U/Net system to
Myrinet while working in ourgroup(in May and Junél997). Dr. Mario Lauria (currently at UC San
Diego) stayed in ougroupduring August1997 to work on collective communication using our DAS
system.



We also participated in the TEMPUS project 'DISCO’ ("Development in Romania of short-
term higher education in computing, centered on distributed processing and its applications"). Several
staff members and students from Romanigniversitiesspent a few months in ougroupas part of
this project, to do research on parallel programming. Prof. Irina Athanasiu (Polytechnical University
of Bucharestrooperatedvith us on data-parallel Orca [21] and parallel applications [1].

Members of ourgroup spent some time at MIT, the University d&dinburgh,and Cornell
University and attended numerous international conferencesvarkkhopsduring the course of the
project. Bal was program chair of tHEEE Computer Society 1994 International Conference on
ComputerLanguagegToulouse,1994), co-chair of the Internet Programminganguagesvorkshop
(Chicago,1998),and progranmcommitteemember ofaboutfifteen conferences andorkshops. Dr.
Langendoerwas program chair of the first argecondWorkshopon Runtime Systems for Parallel
Programming (Geneva, April 1997 afflando,March 1998).

We have also had several contacts wittustry, mainly throughM.Sc. students. Various stu-
dents supervised by Prof. Bal did their final project afragtustrialor governmentatesearctinstitute,
including NLR,GAK, RIVM, CBS, andTijl Data. Other students did projects at foreigriversities,
including the University oBologna,the University of Lancaster, and the University lohgkoping.
Several foreign studentgfrom Technische Universitdt Graz and Polytechnical University of
Bucharest) did a M.Sc. project in ogroup.

All researchers of ougroup participate in the ASCI (Advance&choolfor Computing and
Imaging) researclschool. Bal is a member of the board of ASCI and was chairman of the ASCI'97
conference and of the DA®orkshop(March 1998). Our groupalso plays an important role in the
DAS project.

11. Discussion

In the project, we did research on programmgugpportfor parallel and distributed computer systems.

The PIONIER grant allowed us to do this research in much greater depth than the majority of other
(international) projects. We were able $tudy (1) programming models andnguageghat make

parallel programming on distributed systems as easy as possible; (2) advanced techniques to imple-
ment these models efficiently and in a portable way; and (3) to evaluate the models and implementa-
tion techniques using realistic applications. In comparison, many other projects investigate only one
of these issues in isolation. Since the combination of ease-of-use, efficiencgpeadility is a chal-
lenge,studyingall these issues in depth is of great value.

Our research project has obtained a higgibility. We have many international contacts and
members from ougroupare often invited for giving talks or joining progranommitteeqe.g., Bal
was selected for théEEE CS EuropearDistinguishedVisitors Program). The project resulted in
severalpublicationsin top journals. The most importapublicationsof the PIONIER project are our
papers iINACM Transactions on Computer Systems [4] and ACM Transactions on Programming
Languages and Systems [23]. TOCS is the most prestigious journal in the area of computer systems
andpublishesabout16 papers a year. Also, we have a papelEBEE Computer, and three papers in
IEEE Concurrency (formerly calledlEEE Parallel and Distributed Technology). A paperaboutour
LFC protocol [15]receivedthe best-paper-award (out of 214 submissions) at the 1998 International
Conference on Parallel Processing (Minneapolis). The projectpatstuceduseful software, which
further increased ouvisibility. The sources of the Orca system are availabl®ughthe World
Wide Web and have been downloaded by more than 200 people.

The PIONIER project also had a large impact within the university. The VSNU research
evaluation gave the highest possible ranking (i.e., “excellent” for all criteria) for the research of the
Computer Systemgroup (which consists of the PIONIERroupand prof. Tanenbaum’s distributed
systemgyroup). On 1 April 1998,Dr. Bal wasappointedpart-time (0.4) professor in the Department
of Mathematics and Computer Science and the Department of PhysicAstrmthomy,to work on



physics-appliedomputer science (in particular parallel and interactive applications). As a result, the
collaboration with the Physics departmemill be intensified significantly in the near future. Also,
the departments of Mathematics & Computer Science, Physist@bnomy,and Chemistryeceived

a substantial research grant from the VUctoperaten a new cluster computing project that started
recently. This grant allowed us to extend our cluster to Iftles. Finally, Bal receiveda research
grant from the VU("Universitair StimuleringsFonds”), funding a group of substantial size during

the next four years. Thigroup will do research in several areas, including parallel object-based
languageswide-area parallel programming, distributed shared memory, and interactive applications.

Appendix A: Research group

The table below gives an overview of the reseagobup. Dr. Plaat wagsundedthroughthe PIONIER
grant during May to October 1997 and subsequently by a SION grant. Dr. Hofmarfuwded
throughthe PIONIER grantntil 1 Junel998,and currently is employed by the VU.

Name Position From To Funding
Prof. dr. ir. H.E. Bal Professor VU

Dr. K.G. Langendoen | Associate Researcher 1/1/93  31/1/98 NWO
Drs. T. Rihl Ph.D. student/researcher  1/7/93  31/5/98 NWO
Drs. R.A.F. Bhoedjang| Ph.D. student/researcher  1/7/94 VU
Drs. J.W. Romein Ph.D. student 1/9/94 VU

Drs. J.C.H. Jacobs Programmer VU

Dr. R.F.H. Hofman Programmer NWO/VU
Drs. C. Verstoep Programmer VU

Dr. S. Ben Hassen Postdoc 1/9/94  31/12/96 NWO
Dr. G.V. Wilson Postdoc 1/1/94  31/9/94 EC

Dr. A. Plaat Postdoc 1/5/97 NWO/SION
Dr. T. Kielmann Postdoc 1/3/98 VU
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